La varianza de Allan en la Metrología de Tiempo y Frecuencia

J. Mauricio López R. División de Tiempo y Frecuencia Centro Nacional de Metrología jlopez@cenam.mx

relojes atómicos

Un segundo es la duración de 9 192 631 770 periódos de la radiación asociada a la transición hiperfina del estado base del átomo de Cesio-133.

Modelo matemático para señales de frecuencia patrón (ideales)

 $V(t) = Asen(2\pi v t)$

A: amplitud v: frecuencia t: tiempo

relojes de cuarzo

Inestabilidad en frecuencia: Modelo matemático para señales de frecuencia patrón (reales)

La relación Tiempo - Frecuencia

Inestabilidaden frecuencia (ruido)

V(t) = salida del oscilador, $\varepsilon(t) = \text{amplitud de ruido,}$ $\Phi(t) = \text{Fase},$ V_0 = Amplitud nominal pico-a-pico v_0 = frecuencia nominal $\phi(t)$ = ruido de fase

Ruido en mediciones eléctricas

Envejecimiento y estabilidad de corto plazo

Tiempo / tao = 10 minutos

Ruido en frecuencia

Ruido en frecuencia

Dependencia temporal	$S_z(f) = h_\alpha f^\alpha$	nombre
	$\alpha = 0$	White
www.andsouphand	α = -1	Flicker
man	α = -2	Random walk
	α = -3	

Las graficas muestran las fluctuaciones de la variable z(t), la cual puede ser, por ejemplo, la salida de un contador (Δf vs. t), o la medición de fase ($\phi[t]$ vs. t). Los gráficos muestran tanto la dependencia temporal como la dependencia en frecuencia; h_{α} es el coeficiente de amplitud.

Centro Nacional de Metrología - Derechos Reservados 2005

Time

Varianza de Allan

$$\sigma_{y}^{2}(\tau) = \frac{1}{2(N-1)} \sum_{i=1}^{N-1} (y_{i+1} - y_{i})^{2}$$

donde:

- σ_y^2 Varianza de Allan
- N Número de datos espaciados τ_0
- *Y_i i-ésima* medición de fase

Varianza de Allan para Mediciones de Diferencia de Fase

$$\sigma_{y}^{2}(\tau) = \frac{1}{2(N-2m)\tau^{2}} \sum_{i=1}^{N-2m} (x_{i+2m} - 2x_{i+m} + x_{i})^{2}$$

donde:

 σ_y^2 Varianza de Allan x_i *i-ésima* medición de faseNNúmero de datos espaciados τ_0 τ Tiempo de observación = $m\tau_0$ m= 2ⁿ cálculos posibles

Barras de Incertidumbre

Distribución χ^2

Para df < 100
$$\chi^2 = (df) \frac{s_y^2}{\sigma_y^2}$$

donde:

$$s_y^2$$
 Estimado de la Varianza de Allan
 df Número de grados de libertad
 σ_y^2 Varianza de Allan verdadera

Barras de Incertidumbre

Distribución X²

Tabla X²

TABLE VII. The χ^2 Distribution

x2

The first column lists the number of degrees of freedom (ν). The headings of the other columns give probabilities (P) for χ^2 to exceed the entry value. For $\nu > 100$, treat $\sqrt{2\chi^2} - \sqrt{2\nu - 1}$ as a standard normal variable.

VP v	0.995	0,975	0.050	0.025	0.010	0.005
1	0.043927	0.039821	3.84146	5.02389	6.63490	7.87944
2	0.010025	0.050636	5.99147	7.37776	9.21034	10.5966
3	0.071721	0.215795	7.81473	9.34840	11.3449	12,8381
4	0.206990	0.484419	9.48773	11.1433	13.2767	14.8602
30	13,7867	16.7908	43.7729	46.9792	50.8922	53.6720
40	20.7065	24.4331	55.7585	59.3417	63.6907	66.7659
50	27.9907	32.3574	67.5048	71.4202	76.1539	79.4900
60	35.5346	40.4817	79.0819	83.2976	88.3794	91.9517
70	43.2752	48.7576	90.5312	95.0231	100.425	104.215
80	51.1720	57.1532	101.879	106.629	112.329	116.321
90	59.1963	65.6466	113.145	118.136	124.116	128.299
100	67.3276	74,2219	124.342	129.561	135.807	140.169

Barras de incertidumbre

Para df > 100

Barras de incertidumbre

Para df > 100

$$\chi^2(0,025) = \frac{1}{2}(h-1,96)^2$$
Barra
Superior

$$\chi^2(0,975) = \frac{1}{2}(h+1,96)^2$$

Barra Inferior

donde:

$$h = \sqrt{2df - 1}$$

Número de Grados de Libertad

White Phase Modulation

Flicker Phase Modulation $df = \exp\left[\ln\left(\frac{N-1}{2n}\right)\ln\left(\frac{(2m+1)(N-1)}{4}\right)\right]$ White Frquency Modulation $df = \left[\frac{3(N-1)}{2m} - \frac{2(N-2)}{N}\right]\frac{4m^2}{4m^2 + 5}$

NBS Technical note 679

Número de Grados de Libertad

Flicker Frequency Modulation $df = \frac{2(N-2)}{2,3N-4,9} \quad para \ m = 1$ $df = \frac{5N^2}{4m(N+3m)} \quad para \ m \ge 2$

Random-Walk
Frequency
Modulation
$$df = \frac{N-2}{m} \frac{(N-1)^2 - 3m(N-1) + 4m^2}{(N-3)^2}$$

NBS Technical note 679

Por debajo del ruido "fliker", los cristales de cuarzo tipicamente tienen una dependencia τ^{-1} (white phase noise). Los patrones atómicos de frecuencia muestran una dependencia del tipo $\tau^{-1/2}$ (white frequency noise) para tiempos de promediación cercanos al tiempo de ataque del lazo de amarre, y τ^{-1} para tiempos menores del tiempo de ataque. Tipicamente los τ 's para el ruido flicker son: 1 s para osciladores de cuarzo, 10³s para relojes de rubidio y 10⁵s para Cesio.

La varianza de Allan en la Metrología de Tiempo y Frecuencia

J. Mauricio López R.

División de Tiempo y Frecuencia

Centro Nacional de Metrología

jlopez@cenam.mx

GRACIAS